

Check out our new paper to be presented at FaaCT, "Trucks Don't Mean Trump: Diagnosing Human Error in Image Analysis" led by @jdzamfi with coauthors Jerry Chen, Emily Wen, @allisonkoe, @NikhGarg, and me (

arxiv.org/abs/2205.07333)! 1/

Trucks Don't Mean Trump: Diagnosing Human Error in Ima...

arxiv.org

Algorithms provide powerful tools for detecting and dissecting human bias and error. Here, we develop machin...

2:16 PM · May 17, 2022

1 12 Reply

content moderation, etc. Here, we develop a machine learning approach to analyze the ways in which they err in doing so. 2/ \bigcirc 3 ılı

People often have to analyze images in high-stakes settings - medicine,

Emma Pierson @2plus2make5 · May 17, 2022 We rely on a unique dataset kindly provided to us by the @nytimes: 16 million human predictions of whether a neighborhood voted for Trump or Biden in the 2020 election, based on a Google Street View image (

nytimes.com/interactive/20...). 3/ ılı Emma Pierson @2plus2make5 · May 17, 2022

This data is cool because it has a large number of human judgments on

each image (more than a thousand!) and a ground truth defined

studying human error would be circular. 4/ ılı Emma Pierson @2plus2make5 · May 17, 2022

We show that by training a machine learning estimator of p(voted Trump |

neighborhood image), you can get a number of useful results... 5/

independent of human judgment. The latter is unusual, and key - otherwise

Emma Pierson @2plus2make5 · May 17, 2022 You can decompose human error into bias, variance, and noise terms,

analogous to the decomposition for ML classifiers. Bias = suboptimality in

the aggregate human decision; variance = suboptimality due to variance

across individual humans; noise = unavoidable error. 6/ Emma Pierson @2plus2make5 · May 17, 2022 In our data, accuracy loss due to bias is smaller than that due to variance +

noise - humans in aggregate are actually pretty good at this task (wisdom of

crowds) even though individual humans are erratic and the task is hard. 7/

Post optimal Reply 75.2% model (-24.8%)

We also provide several methods for identifying specific features which lead people astray, like pickup trucks (people think they indicate Trump more than they really do). 9/

Emma Pierson @2plus2make5 · May 17, 2022

Q 1

ılı

Emma Pierson @2plus2make5 · May 17, 2022 You can follow our playbook on other image (or non-image) datasets with human (or algorithmic) judgments + objectively defined ground truth - and those datasets are becoming increasingly available! See eg docs.nightingalescience.org for medical datasets with objective ground

 \heartsuit 2

ılı

truth. ılı **Ċ**Ţ